Copied to
clipboard

G = C622D6order 432 = 24·33

2nd semidirect product of C62 and D6 acting faithfully

non-abelian, supersoluble, monomial

Aliases: C622D6, He37(C2×D4), C3⋊Dic32D6, C324(S3×D4), He33D46C2, He36D44C2, He3⋊C23D4, C327D44S3, C3.2(Dic3⋊D6), C32⋊C122C22, C223(C32⋊D6), (C2×He3).18C23, (C22×He3)⋊2C22, C6.92(C2×S32), (C2×C3⋊S3)⋊3D6, (C2×C6).58S32, He3⋊(C2×C4)⋊3C2, (C2×C32⋊D6)⋊4C2, C2.18(C2×C32⋊D6), (C2×C32⋊C6)⋊3C22, (C3×C6).18(C22×S3), (C22×He3⋊C2)⋊2C2, (C2×He3⋊C2)⋊4C22, SmallGroup(432,324)

Series: Derived Chief Lower central Upper central

C1C3C2×He3 — C622D6
C1C3C32He3C2×He3C2×C32⋊C6C2×C32⋊D6 — C622D6
He3C2×He3 — C622D6
C1C2C22

Generators and relations for C622D6
 G = < a,b,c,d | a6=b6=c6=d2=1, ab=ba, cac-1=a-1b, dad=a-1b4, cbc-1=b-1, bd=db, dcd=c-1 >

Subgroups: 1467 in 221 conjugacy classes, 37 normal (15 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, D4, C23, C32, C32, Dic3, C12, D6, C2×C6, C2×C6, C2×D4, C3×S3, C3⋊S3, C3×C6, C3×C6, C4×S3, D12, C2×Dic3, C3⋊D4, C3×D4, C22×S3, C22×C6, He3, C3×Dic3, C3⋊Dic3, S32, S3×C6, C2×C3⋊S3, C62, C62, S3×D4, C2×C3⋊D4, C32⋊C6, He3⋊C2, He3⋊C2, C2×He3, C2×He3, S3×Dic3, D6⋊S3, C3⋊D12, C3×C3⋊D4, C327D4, C2×S32, S3×C2×C6, C32⋊C12, C32⋊D6, C2×C32⋊C6, C2×He3⋊C2, C2×He3⋊C2, C22×He3, S3×C3⋊D4, He3⋊(C2×C4), He33D4, He36D4, C2×C32⋊D6, C22×He3⋊C2, C622D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C22×S3, S32, S3×D4, C2×S32, C32⋊D6, Dic3⋊D6, C2×C32⋊D6, C622D6

Smallest permutation representation of C622D6
On 36 points
Generators in S36
(7 8)(9 10)(11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)
(1 2 6 5 4 3)(7 9 12 8 10 11)(13 17 14 18 15 16)(19 23 21 22 20 24)(25 30 29 28 27 26)(31 32 33 34 35 36)
(1 28 22 8 18 32)(2 29 20 12 15 31)(3 27 21 10 14 33)(4 26 23 11 17 34)(5 25 19 7 13 35)(6 30 24 9 16 36)
(1 22)(2 20)(3 21)(4 23)(5 19)(6 24)(7 35)(8 32)(9 36)(10 33)(11 34)(12 31)

G:=sub<Sym(36)| (7,8)(9,10)(11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,2,6,5,4,3)(7,9,12,8,10,11)(13,17,14,18,15,16)(19,23,21,22,20,24)(25,30,29,28,27,26)(31,32,33,34,35,36), (1,28,22,8,18,32)(2,29,20,12,15,31)(3,27,21,10,14,33)(4,26,23,11,17,34)(5,25,19,7,13,35)(6,30,24,9,16,36), (1,22)(2,20)(3,21)(4,23)(5,19)(6,24)(7,35)(8,32)(9,36)(10,33)(11,34)(12,31)>;

G:=Group( (7,8)(9,10)(11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,2,6,5,4,3)(7,9,12,8,10,11)(13,17,14,18,15,16)(19,23,21,22,20,24)(25,30,29,28,27,26)(31,32,33,34,35,36), (1,28,22,8,18,32)(2,29,20,12,15,31)(3,27,21,10,14,33)(4,26,23,11,17,34)(5,25,19,7,13,35)(6,30,24,9,16,36), (1,22)(2,20)(3,21)(4,23)(5,19)(6,24)(7,35)(8,32)(9,36)(10,33)(11,34)(12,31) );

G=PermutationGroup([[(7,8),(9,10),(11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36)], [(1,2,6,5,4,3),(7,9,12,8,10,11),(13,17,14,18,15,16),(19,23,21,22,20,24),(25,30,29,28,27,26),(31,32,33,34,35,36)], [(1,28,22,8,18,32),(2,29,20,12,15,31),(3,27,21,10,14,33),(4,26,23,11,17,34),(5,25,19,7,13,35),(6,30,24,9,16,36)], [(1,22),(2,20),(3,21),(4,23),(5,19),(6,24),(7,35),(8,32),(9,36),(10,33),(11,34),(12,31)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D4A4B6A6B6C6D6E6F···6J6K6L6M6N6O6P12A12B
order12222222333344666666···66666661212
size112991818182661218182226612···121818181836363636

32 irreducible representations

dim111111222224444666
type+++++++++++++++++
imageC1C2C2C2C2C2S3D4D6D6D6S32S3×D4C2×S32Dic3⋊D6C32⋊D6C2×C32⋊D6C622D6
kernelC622D6He3⋊(C2×C4)He33D4He36D4C2×C32⋊D6C22×He3⋊C2C327D4He3⋊C2C3⋊Dic3C2×C3⋊S3C62C2×C6C32C6C3C22C2C1
# reps112211222221212224

Matrix representation of C622D6 in GL6(𝔽13)

10121207
039076
009002
00012010
000049
0000010
,
400300
040030
0040012
0001000
0000100
0000010
,
010000
1210000
0790121
0200120
11201120
01011084
,
1200000
1210000
8011200
0001200
0001210
000801

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,3,0,0,0,0,12,9,9,0,0,0,12,0,0,12,0,0,0,7,0,0,4,0,7,6,2,10,9,10],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,3,0,0,10,0,0,0,3,0,0,10,0,0,0,12,0,0,10],[0,12,0,0,11,0,1,1,7,2,2,10,0,0,9,0,0,11,0,0,0,0,1,0,0,0,12,12,12,8,0,0,1,0,0,4],[12,12,8,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,12,12,12,8,0,0,0,0,1,0,0,0,0,0,0,1] >;

C622D6 in GAP, Magma, Sage, TeX

C_6^2\rtimes_2D_6
% in TeX

G:=Group("C6^2:2D6");
// GroupNames label

G:=SmallGroup(432,324);
// by ID

G=gap.SmallGroup(432,324);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,254,135,571,4037,537,14118,7069]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=c^6=d^2=1,a*b=b*a,c*a*c^-1=a^-1*b,d*a*d=a^-1*b^4,c*b*c^-1=b^-1,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽